• Sunday July 12,2020

Triangle

Nous expliquons tout sur le triangle, ses propriétés, ses éléments et sa classification. En outre, comment sont calculés sa superficie et son périmètre.

Les triangles sont des figures géométriques plates et basiques.
  1. Qu'est-ce qu'un triangle?

Les triangles ou triangles sont des figures géométriques de base, plates, qui ont trois côtés en contact les uns avec les autres en des points communs appelés sommets. Son nom vient du fait qu'il a trois angles internes ou internes, formés par chaque paire de lignes en contact dans le même sommet.

Ces figures géométriques sont nommées et classées en fonction de la forme de leurs côtés et du type d'angle qu'elles construisent. Cependant, ses côtés sont toujours trois et la somme de tous ses angles donnera toujours 180 .

Les triangles ont été étudiés par l’humanité depuis des temps immémoriaux, puisqu’ils ont été associés au divin, aux mystères et à la magie. Par conséquent, il est possible de les trouver dans de nombreux symboles occultes (maçonnerie, sorcellerie, cabala, etc.) et dans les traditions religieuses. Son numéro associé, trois (3), renvoie numériquement au mystère de la conception et à la vie elle-même.

Dans l’histoire du triangle, l’antiquité grecque mérite une place de choix. Le grec Pythagore (c. 569 c. 475 av. J.-C.) a proposé son célèbre théorème pour les triangles rectangles, selon lequel le carré de l'hypoténuse est égal à la somme des carré des jambes.

Voir aussi: Trigonométrie

  1. Propriétés du triangle

Les propriétés les plus évidentes des triangles sont leurs trois côtés, leurs trois sommets et leurs trois angles, qui peuvent être similaires ou totalement différents les uns des autres. Les triangles sont les polygones les plus simples existants et n’ont pas de diagonale, puisqu’à trois points non alignés, il est possible de former un triangle.

En fait, tout autre polygone peut être divisé en un ensemble ordonné de triangles, appelé triangulation, afin que l’étude des triangles soit fondamentale pour la géométrie. a.

De plus, les triangles sont toujours convexes, jamais concaves, car leurs angles ne peuvent jamais dépasser 180 (ou radians).

  1. Éléments du triangle

Les triangles sont formés de trois côtés qui se rejoignent à trois sommets.

Les triangles sont constitués de plusieurs éléments, dont beaucoup ont déjà été mentionnés:

  • Sommets Ce sont les points qui définissent un triangle en joignant deux d’entre eux par une ligne droite. Ainsi, si nous avons les points A, B et C, les joindre aux lignes AB, BC et CA donnera un triangle. De plus, les sommets sont situés du côté opposé aux angles intérieurs du polygone.
  • Côtés . C'est ce que chacune des lignes qui joignent les sommets d'un triangle s'appelle délimitant la figure (l'intérieur de l'extérieur).
  • Les angles Les deux côtés d'un triangle forment dans leur sommet commun un certain type d'angle, appelé angle intérieur, car il fait face à l'intérieur du polygone. Ces angles sont, comme les côtés et les sommets, toujours trois.
  1. Types de triangle

Les triangles peuvent être classés en fonction de leurs angles ou de leurs côtés.

Il y a deux classifications principales de triangles:

Selon ses côtés . En fonction de la relation entre ses trois côtés différents, un triangle peut être:

  • Équilatéral . Quand ses trois côtés ont exactement la même longueur.
  • Isisceles . Lorsque deux de ses côtés ont la même longueur et le troisième différent.
  • Scalene Lorsque ses trois côtés ont des longueurs différentes les uns des autres.

Selon leurs angles . En fonction de l’ouverture de vos angles, nous pouvons parler de triangles:

  • Rectangles Ils ont un angle droit (90 ) composé de deux côtés similaires (jambes) et opposés au troisième (hypoténuse).
  • Angles obliques . Ceux qui n’ont pas d’angle droit et qui peuvent être:
    • Angles doux . Lorsque l'un de ses angles intérieurs est obtus (supérieur à 90 ) et les deux autres aigus (inférieur à 90 ).
    • Acute ngles . Lorsque ses trois angles intérieurs sont aigus (moins de 90 ).

Ces deux classifications peuvent être combinées, ce qui nous permet de parler de triangles angles droits, triangles aigues scalènes, etc.

  1. Périmètre d'un triangle

Le périmètre d'un triangle est calculé en ajoutant ses côtés.

Le périmètre d'un triangle est la somme de la longueur de ses côtés et est généralement désigné par la lettre p ou par 2 . L'équation pour déterminer le périmètre d'un triangle ABC donné est la suivante:

p = AB + BC + CA.

Par exemple: un triangle dont les côtés mesurent 5 cm, 5 cm et 10 cm aura un périmètre de 20 cm.

  1. Surface d'un triangle

Pour calculer l'aire du triangle, il est nécessaire de connaître sa hauteur.

L'aire d'un triangle (a) est l'espace intérieur délimité par ses trois côtés . Il peut être calculé en connaissant sa base (b) et sa hauteur (h), selon la formule:

a = (bh) / 2 .

La superficie est mesurée en unités de longueur au carré (cm 2, m 2, km 2, etc.)

La base d'un triangle est son côté sur lequel repose la figure, généralement celle du bas. Au lieu de cela, pour trouver la hauteur d’un triangle, nous devons tracer une ligne à partir du sommet opposé à la base, c’est-à-dire l’angle supérieur. Cette ligne doit former un angle droit avec la base.

Ainsi, par exemple, ayant un triangle iscentrique de côtés: 11 cm, 11 cm et 7, 5 cm, nous pouvons calculer sa hauteur (7 cm) et appliquer ensuite la formule: a = (11 cm x 7 cm) / 2, ce qui donne un résultat de 38, 5 cm 2 .

  1. Autres figures géométriques

Le carré, le rectangle et le cercle sont les autres figures géométriques simples.

Les autres figures géométriques bidimensionnelles d'importance sont:

  • La place . Parfaitement égaux polygones à quatre côtés, ancêtres de cube en deux dimensions.
  • Le rectangle Si nous prenons un carré et que nous allongions deux de ses côtés opposés, nous obtiendrons un chiffre composé de quatre lignes: deux égales et deux différentes (mais égales entre elles). C'est un rectangle.
  • Le cercle Nous connaissons tous le cercle, l’une des formes les plus simples de la géométrie et qui consiste en une ligne courbe continue qui revient au point initial en traçant un cercle de circonférence.

Suivre avec: mathématiques


Des Articles Intéressants

La géosphère

La géosphère

Nous vous expliquons ce qu'est la géosphère et comment est sa structure. En outre, comment cet ensemble de couches est composé et son importance. L'étude de la géosphère est réalisée à travers la revue expérimentale des sols. Quoi-est-ce que lege sphère? Dans les sciences naturelles, l' ensemble des couches qui constituent la partie solide de la Terre s'appelle la «sphère» ou «géosphère ». Ensemble avec l&

Processeur

Processeur

Nous expliquons ce qu'est un processeur et de quoi il est fait. De plus, comment fonctionnent les processeurs et quelles sont leurs étapes. C'est l'un des composants informatiques qui a le plus évolué. Qu'est-ce qu'un processeur? Le processeur est le cerveau du système, il traite simplement tout ce qui se passe sur le PC et exécute toutes les actions existantes . Plu

Emballage

Emballage

Nous expliquons ce que l’emballage est et la signification de ce terme. En outre, son importance et son utilité aujourd'hui. L'emballage consiste en la production de l'emballage des différents produits. Quel est l' emballage ? Le mot « packaging» vient de l'anglais et signifie littéralement « packaging» . Cependa

La réalité

La réalité

Nous vous expliquons ce qu'est la réalité selon différents penseurs tels que Platon, Arist teles, Descartes, Jacques Lacan et Sigmund Freud. Le concept de réalité est parlé dans la Grèce classique. Quelle est la réalité? Le concept de réalité vient de la branche "realitas" et fait référence à tout ce qui existe réellement , à la réalité; c'est-à-dire tout ce qui ne fait pas partie de l'imagination ou du fantasme et qui a la propriété d'exister parce qu'il peut être perçu par l'un des sens ou par la raison. La réalité est un con

BD

BD

Nous vous expliquons ce qu'est la bande dessinée et l'histoire de cette forme d'expression artistique. En outre, les différents types de bandes dessinées et leurs particularités. La bande dessinée est une forme d'expression artistique et, à son tour, un moyen de communication. Quelle est la bande dessinée? Le te

Géographie physique

Géographie physique

Nous vous expliquons quelle est la géographie géographique, son histoire, ses caractéristiques et ses exemples. En outre, des différences avec la géographie humaine. La géographie géographique étudie la géosphère, l'hydrosphère et l'atmosphère. Quelle est la géographie géographique? La branche d